• 0 Posts
  • 12 Comments
Joined 1 year ago
cake
Cake day: August 13th, 2023

help-circle
  • I think you have a hard time understanding the différence between “not possible” and “much harder”.

    In Rust, the code does not compile.

    In C++ the code compile, but

    • if you have a test case
    • this test case triggers the bug (it is not guarateed to properly reproduce you production environment since it depends on the parameters of the allocator of your vector)
    • you use ubsan

    … then the bug will be caught.

    Yes it is possible, noone says the opposite. But you can’t deny it’s harder. And because its harder, more bugs get past review, most notably security bugs as demonstrated again and again in many studies. The


  • That’s why I did not said it was impossible, just order of magnitude harder to catch in C++ compared to Rust.

    To have asan finding the bug, you need to have a valid unit test, that has a similar enough workload. Otherwise you may not see the bug with asan if the vector doesn’t grow (and thus ref would still be valid, not triggering UB), leading to a production-only bug.

    Asan is a wonderfull tool, but you can’t deny it’s much harder to use and much less reliable than just running your compiler.


  • void foo() {
        std::vector v = {0, 1, 2, 4};
        const auto& ref = v[1];
        add_missing_values(v);
        std::cout << ref << "\n";
    }
    
    void add_missing_values(std::vector<int>& v) {
        // ...
        v.push_back(3);
    }
    

    Neither foo(), nor add_missing_values() looks suspicious. Nonetheless, if v.push_back(3) requires v to grow, then ref becomes an invalid reference and std::cout << ref becomes UB (use after free). In Rust this would not compiles.

    It is order of magnitudes easier to have lifetime errors in C++ than in Rust (use after free, double free, data races, use before initialisation, …)






  • I absolutely agree that method extraction can be abused. One should not forget that locality is important. Functionnal idioms do help to minimise the layer of intermediate functions. Lamda/closure helps too by having the function much closer to its use site. And local variables can sometime be a better choice than having a function that return just an expression.




  • Read your own code that you wrote a month ago. For every wtf moment, try to rewrite it in a clearer way. With time you will internalize what is or is not a good idea. Usually this means naming your constants, moving code inside function to have a friendly name that explain what this code does, or moving code out of a function because the abstraction you choose was not a good one. Since you have 10 years of experience it’s highly possible that you already do that, so just continue :)

    If you are motivated I would advice to take a look to Rust. The goal is not really to be able to use it (even if it’s nice to be able able to write fast code to speed up your python), but the Rust compiler is like a very exigeant teacher that will not forgive any mistakes while explaining why it’s not a good idea to do that and what you should do instead. The quality of the errors are crutial, this is what will help you to undertand and improve over time. So consider Rust as an exercice to become a better python programmer. So whatever you try to do in Rust, try to understand how it applies to python. There are many tutorials online. The official book is a good start. And in general learning new languages with a very different paradigm is the best way to improve since it will help you to see stuff from a new angle.